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Pari-Mutuel as a System of Aggregation

of Information

1. The Individual Bettor

Let us consider the problem faced by a bettor at a race
track. There afe n horses, with (subjective) probabilities
Pys PyreewsPy of winning. He has a4 dollars to bet on these
horses, and a bet of x dollars on horse j will return x/qj
dollars if that horse wins. (The x/qj includes the bettor's
original x dollar bet,) It is assumed that the pj and qj

satisfy the standard conditions

n
(1) 25
=1 ; .2 0
PJ PJ
j=1
and
n
2 z =1 ; 2 0
(2) 9 7
j=1

Condition (1) means the bettor's subjective probabilities
are consistent; condition (2) means the payoff odds are fair.
(Though, in fact, thev seldom are, and most bookies will normally
announce odds such that jiqj is substantially grecater than
1, i.e., they pay less than a "fair" system would.)

The bettor has a utility function u for money; it will be
assumed that u is monotone non-decreasing and continuous. The

bettor's problem, then, is to choose his bets, x , X _, SO as to

JEERE n

maximize his expected utility, given as

(o8]

(

n
X5
) F(X,,..0,% ) = EE .U - B + A .
< n PJ '?j

Jj=1
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where
n
(4) B=Zx.
J
j=1
subject to
(5) B < a
(6) x. 20 .

The first thing we notice is that, assuming the fairness
conditions (2), the bettor might as well set B = 4, i.e. bet all
his available funds. In fact, suppose we had B < A. We could
then set € = a - B, and

X; = x, + €q. j=1,...,n .

In this case,

and, moreover,

X,
= A
F(XI""' xn) ijU <q.+€>

so that F(x') = F(x), i.e. the bettor can do at least as well with

bets xj' such that B’ = a4 as with any other bets with B < a.

Ve simplify the problem, then, to one of maximizing

X .,
(7) F(Xypenee, x ) = zzp, v (—l)
i 7 75
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subject to

(8) szj = A

(9) x, 20

Assuming differentiability of v, the first-order conditions

for optimality will be

D. X

(10a) L gy (-l)= A if x. > o0
q; q; J
p

(10b) L yr (0) < 2 if x. =0
q, J

where A is a Lagrange multiplier representing the marginal utility
of money.
In case u is not differentiable at the point xj/qj, conditions

(10) must be modified, in terms of the right-hand and left-hand

)

derivatives of u to give

gﬁlﬂ*

p.
(11) 71y (fi *) s sz (
qj qj J

Now (10a) can be rewritten as
X

cur (L) = aq..
Pj (Q-) 7;
J
In the simplest case, all xj are positive, so that (10a) holds for
all j. Adding with respect to j, we have, by (2)
X .

(12) A = Z p] U _l

J 9j
so that A is simply the expected value of U'.

“'ore generally, of course, (12) does not hold for all j, and

U TN _' TR "-""v..'-"‘. .
'&thmmmﬁuﬂudng



o
jﬁf so we can only state that A is at least equul to the expected
value of v’.

oy In case U is concave, the first-order conditions (10) are

:EG sufficient for optimality. We rewrite these as

:‘."_:.: X, Ag .,

U’ (—‘7-)= — if x. > o0

O q, P, J

S J J

b , Ag ., .

-l (11) ur (0) s 7 f %, =0

- pj

Lo Using the fact that v’ is monotone non-increasing (for concave
E} U), we obtain the intcresting result

...:.

_::.‘: X . X D p

- (15) 2 > X henever 1,k

:Ji with the stronger result that, for strictly concave v, (15) holds
ey even if the second inequality is loose.

( .

.- . Thus, a discrepancy between the bettor's subjective probabilities
o and the payoff odds leads the bettor to bet so that his conditional
}j; winnings will be greater for horses for which the ratio pj/qj

_J A

SN 1s greater, and conversely.

o Conditions (13) and (14) are meaningful if both p, and g,

Ei; are positive. In case p = o0, qj > 0, it is easily seen that

® J
N optimality requires xj = 0, i.e. never bet on a horse which

}$ (subjectively) has no chance of winning. It is not clear what
+
L?? happens if qj = 0, though in practice it is difficult to imagine
- a situation in which infinite odds were offered. 1In case p; =
'2; 7; < 0, we imagine the bettor will still set X, = 0; in case

-zrj pj > qj = 0, however, we seem to reach some sort of contradiction.
N .

[}

- We note, then that qj = 0 leads to contradictions which would best
T
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be avoided; among other things, the payoff functions are discontinuous
or fail to exist here.
In case U is strictly concave, we may use the inverse function

w = (U')_l and (13) - (14) now take the form

Ag . Ag .

(16) x,=g.w(-—l) if w(——l) >0
J J p, P,
J J
Ag .

(17) x. = 0 if w <——l) <0
J P

Condition (8) can be restated as

(18) A = ji q; W (iii)

Py

where the prime on the summation symbol means that it should con-

sider only those j such that (16) holds, i.e. such that

19 Ag. < .U (0
(19) 9 P; (0)

The right side (18) can be secn to be a monotcone non-increasing
function of A and thus (18) can be solved, numerically or
analytically, for A. This presumably solves the single bettor's

problem,

Rl
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2. The Equilibrium Odds

In general, bookies tend to be risk-averse and seek to set
payoff odds in such a way as to eliminate the possibility of loss.
Of course, a bookie is not bound by the fairness condition (2),
so that, in practice, the sum of the qj is greater than 1. If
(2) were to be enforced, however (perhaps under cutthroat competi-
tion among bookies), the bookie could only eliminate the risk of
loss if the amounts bet on the several horses were proportional

to the qj’ i.e. if
(20) b, =q. C

where bj is the total amount bet on horse j (by all bettors) and
¢ is the total amount of all wagers.

If there is only one bettor, it is easy to see that this can
be accomplished by setting qj = pj. For then xj = qj A will
satisf{y conditions (10) (with X = vu'(a)). In case U is strictly
concave, moreover, this is the bettor's unique optimum, so that
9; = P gives rise to an equilibrium. (Clearly, with one bettor,

b,
J

x. and ¢ = A).

J

If there are two or more bettors, the bookie must look for

some way of combining the several bettors' subjective probabilities
so as to avoid risk. At a race track, this is normally accomplished

by a pari-mutuel system, which simply sets q; = bj/C, so that (20)

is automatically achieved, after the amounts bet are known. 1In
effect, the players bet against each other, with the track as
intermediary. This has the disadvantage - from the players' point

of view - that bets are made with only partial knowledge of the

O ATATRERTATTN
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payoff odds. Thus, a player might well feel he would have changed
his bets, had he known the true payoff odds in advance. Of course
such a change would in turn cause the qj to change, leading to a

further change in bets, et sic ad infinitum, or at least until

some equilibrium is reached. The question is whether such an
equilibrium exists.
Assume. then, = bettors. Bettor i (i = 1,..., m) has a

subjective probability distribution (pil, D

n
Z Pyj =1
j=1

This same bettor has a sum of money, Ay available for betting,

IPXEREY pin) satistying

.. 2 n
P;; 0, and

and a utility function for money, ;- If the odds are posted as

(g,. q ,...,qn), then each bettor will choose («x, x )

, e, X,
1 2 i1’ “i2’ * " in

so as to maximize his expected utility, as discussed above. Total

bets on horse j are then

m
(21) b - Z x

and the total amount bLet on all horses is

m

(22) c = zz Ai = ﬁé bj .
j=1

i=1
There will be an equilibrium if (20) holds for all j.
As was mentioned above, difficulties arise if qj = 0 for
any j. We will therefore try to avoid this, and will specifically

rule out such equilibria. Ye make then the following assumption.

Assumption 2. For every j, there is some i such that p.j > 0.
1

At e e T S T
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Eﬁ- We prove the existence of equilibrium under the further
-
}ﬁ assumption that the utility functions are strictly concave,
et Essentially, this uses a fixed-point theorem. Some care must
fff however be used to avoid the possibility that the fixed point
f’ lies on the boundary of the simplex.
2
_E’ Theorem 1. Suppose Assumption 2z holds, and suppose more-
f' over that all the utility functions are strictly concave. Then
\f there is an equilibrium n-tuple of payolf odds, qj* > 0.
EQ; Proof: Let @ be the unit n-simplex, i.e. the set of
:i vectors (g,,..., g ) satisfying (2). Let 0° be the interior of
3? Q¢ (the set of g with all components positive) and let 30 be the
:;“ boundary of ¢ (the set of g4 with at least one qj = 0.)
:1i; ) For g ¢ 0%, consider bettor i's optimal choice of bets.
-
i As discussed above, it cannot be optimal for him to bet on a
T horse with no chance of winning, so his bets must satisfy, not
éf just (8) and (9), but also the condition X;. =0 whenever Pijp = 0.
.
\r.'
:)' Bestricted to that set, bettor i's expected utiiity,
- n
¥ij
F., (x.,7) = Z p.. U, (—l)
i bl 1j 1 q.
- . 1
. _]=1
.
6' is strictly concave, and so has a unique maximizing vector,
fj; x,*(q). Since r is continuous for all X and all q « Qo, it
x;i will follow that x;*(q) is continuous for ¢ e 0°.
o Let, now, n
- b*(7) = Z x,*(q)
i=1
N Then

. . . o n .
t* is a continuous mapping from ¢ into R". Let, finally,
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b_.*(q) bk*(q)
J(q) = 3 < = max -————

Clearly, J assigns to each gq ¢ 0° a non-empty subset of

v =1{1, 2,..., n} . By the continuity of b*, J is upper semi-
continuous.,

Next, for g € 3¢, define

J(q) = {j lqj = 0}
Since g € 39, J(g) is non-empty here also. Trivially, it is upper
semi~-continuous if restricted to 3¢.

In this way, the mapping o is defined over the entire simplex
Q. We wish to show it is upper semi-continuous, i.e. if ¢g—3@§
and j € J(q), then j ¢ J(&).

In this, we can dispense with the case in which § ¢ QO, since
such ¢ can‘only be approached through 4 ¢ QO, and we know J, res-
tricted to Qo, is semi-continuous. Similarly, we can dispense
with the case that g—-¢, with all g and ¢ ¢ 3Q, since we know
J, restricted to 3¢, is scmi-continuous.

It remains to consider the case in which ¢ & with g € 0°

and ¢4 € 30. Let kK = 7(4). We must show that, for g suff{iciently
close to ¢, J(gq) < X

Take some (fixed) k ¢ K : we have qk = 0. By assumption 2z,
there is some bettor, h, with Py > 0. Keeping h fixed, let Ll(g)

be the set of all F for which phj/qj is maximal.

Suppose qj > 0. As g 4, the ratio php/qk increases without
bound, whereas phj/qj approaches the finite limit, p,j/a.. Thus

. 2 J
7 4 L(g), and we conclude there exists e, > 0 such that, if

9
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AN lg - ¢l <e, ., Ll(q) < «k.
Jﬁj Let r be the minimum of all qj such that éj > 0. Let
.:; €, = r/2. Then, for all ¢ such that |g - ¢| < e, and all j ¢ K,
'::" we will have q; > r/2.
-2 Let s be the minimum of all p, . such that ¢, = 0 and p,. > 0.
g Since Uy is strictly increasing and concave, we know Up'(y+) > 0
;fz for all y. Set, then,
sy () fo, e (1)
L~ €3 T 72 Yp (r) U \2
;::::j
o Finally, let e, = _©
s::,-. 4ncC
A
Let now € be the smallest of €17 €54 €3, and €y4° Assume
?; qg e 0°, lg - 8] < €. Wwe will show J(q) < X.
;i: Let x,*(q) be bettor h's optimal response to the payoff odds
g, and suppose xhj* > g./2 for some j ¢ x. Let p ¢ lL(g). ‘'Since
:{- lg - & < €, £ ¢ k. Moreover, j ¢ Ltg), so
:}'_". p nf > Ph J
t%. and hence, by (13),
..-' # *
e “wl 2 *nj
P a .
0 ! ?;
s * *
fL Thus Xhl and th are both positive, and so we can apply (13) to
e get
::: * *
-_‘.-_ r v X _ 9 P,y . ' X, .
T Jh (LZ_) - Q’_J. Uh <_1ll>
Now, since g7 - @[ < g, we will have qj > r/2, ql < €5, and
‘::’ p!:f > s
o
o
.:-r
.m0 10
()
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Also, phj < 1. Finally, xhj/gj >

v, X;‘ < v, (i) Thus
R L) *Yn 27

' Xt 2 € . 1
Uh (—}-l—l- ) < rs Uh (?)
Y

and, using the definition of ¢

, So by monotonicity

L
2

3 ]

By the monotonicity of v', this gives

e

) .

- *
& fﬁg > 2c
::, C![ r
*‘ * * *
5; Clearly, bi 2 Xh[' and so bl/?[ > gg )
-
& On the other hand, for any k ¢ Kk, b; < ¢ and 9y > r/2. Thus
y * Ed
Pk o< 2c s 4
q, rq

and we see that k ¢ J(q). VWe conclude that J(g) < K.

*
Suppose, on the other hand, there is no j, j ¢ k, with xj > gj/z.

* 1 Z 1
Z thSE qJ<—2—

In this case,

(]
-
3
.
P .

~

and so

N *
. 1 1
. , - —_ > -
- }: *hi 24 T2 %2
-~ j < K
¢ . . * 1
- Thus there is some [ ¢ k with Xng > 7n
L e ! | - . .
o Since |9 - 4 < e, and 7, = 0, we have q, < ¢, and so
[N ' 4 / y) 4
.
v * .
b v
- _l;. 2 hl > 1 = 2C
. ‘y fw 2n €, r
pS .
- 11
q
E.
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i * ., < 2c/r for all j ¢ k¥, and so b.* ., < bp*/q, .
Once again bJ /qJ / J j /qJ / ?Z

Thus we conclude once that J(g) < XK.

We see then that J is an upper scemi-continuous mapping,
assigning a non-empty subset of ¥ to each ¢ ¢ ¢. Define, now,

for s ¢ »w,
q ¢ Q

$(s) = {4 q.=0ifj¢s}.
J

Clearly, ¢ is an upper semi-continuous mapping from the sub-
setsof ¥ to 9. The composition, ¢ = ¢$o0J, is then an upper scmi-
continuous mapping assigning a non-empty, closed convex subset of
Qg to each ¢ ¢ ¢. By the Kakutani fixed-point theorem, such a
mapping must have a fixed point, i.e. there is q*e @, such that

* *

qg e ? (q ).

Clearly g* ¢ 30 since, for g ¢ 3Q, J(q) consists of those

indices j with qj = 0, and so ¢(q) will consist of those vectors
z ¢ 2 such that zj = 0 whenever qj > 0. Thus g* ¢ 0°. But, if
q* QO, the only s ¢ N such that q* ¢ ¢(¢(S) is N itself, i.e.
b.*(g*)
J(g*) = N. This means that —i;;——— is equal for all j, and
j

this will mean that

bi*(q*) = qg* C.

*
J
Thus g* is the desired equilibruim odds vector.

The hypothesis of Theorem 1 - mainly, strict concavity - is
overly restrictive., We can weaken it to require only (weak) con-
cavity together with strict monotonicity of the utility functions.

Assume, then, that the u; are merely concave functions of
money. For ¢ » 0, define

-X
wi(x,t) = Ui (X) - ¢t e

Then wi(x,O)

Ui(x). We have, however,

12 )
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wi'(x,t)

wl."(x,t)

(where, in all cases,

in x for each t > 0.

MRS ReES NS . AALALAMAL AL S,

an accumulation point, g**.

says this will not happen.
Theorem 2.

monotone increasing,

Proof:

In fact, if g =

Define e

respect to x) and so we find Wy

replaced by the strictly concave wi(x;t).

is an equilibrium n-tuple g*

all g*(t) ¢ QO, q** could concecivably belong to 39Q.

and suppose Assumption Z holds.

As discussed above,

obtained with the utility functions wi(x;t).

q*(t), then Jt(q) =

X

7, + =
Li (x) t e

-X

Ui"{x) - t e

the primes denote differentiation with

is strictly concave and monotone

Suppose, then, that each bettor's utility function Ui(x) is

For each ¢ > 0, there

(t). As ¢t

0, these g#*(t) will have

The only difficulty is that, though

Theorem 2

Assume all the functions Ui are concave, strictly

Then there

exists an equilibrium n-tuple g** ¢ 0°.

let g*(t) be the equilibrium

Let ¢t——0; by the

compactness of @, the points g*(t) will have some accumulation
point g*# 0. We must show qg** ¢ 3¢0.

Suppose, then, @ ¢ 30. We will show that, if |g - 4| and ¢t are
sufficiently small, g = g*(¢t).

N, where Jt(q) is the

set J, as described above, with v, replaced by wi(x,t).

17 €57 €3, €4, aS in the proof of Theorem 1, and let
o 1
= 2 » ’ ot
X €5 63/-. Let § < Ui (2).
: Suppose, now, that € is the minimum of €17 €50 44 €5 that
5 lg - 4! < ¢, and that 0 < ¢t < §. We have, now,

........
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The proof then procceds as in that of Theorem 1, leading to the

conclusion that
Jt(q) c K 2 N

and so g # g*(t). Thus & = g**, i.e. g** ¢ 0° as desired.
It is easy to see that, if g*(t) is an equilibrium for each
t, then g** will be an equilibrium for ¢ = 0, i.e. for the utility

functions Ui'

It is possible to weaken the conditions on the utility functions

further - so that they are not strictly increasing, but only if we

strengthen condition z. Consider then

Assumption v. For all i and j, pij > 0.

Theorem 3. Assume all the utility functions are concave and
non-decreasing, and suppose Assumption Y holds. Then there is an

equilibrium g** ¢ 0°.

Proof: We consider first the trivial case in which, for each
bettor i, Ui(x) is maximized at x = a,; (or less). In this case,
it is clear that, for any g ¢ Qo, xij = Aiqj will be optimal for
bettor i, and so every g ¢ 0° will give an equilibrium.

14
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Suppose, then, that for some bettor, say bettor 1, v, is not

maximized at Al. Then vu! (Al,+)> 0, and we will set

1
L
.- U, (Al +) .
v; (Al -) .

Clearly 0 < r < 1.
As before, we replace the utility functions Ui(x) by
X

wol,t) = U (x) -t e ", and consider the equilibria g*(t) obtained

in this manner. (Theorem 1 guarantces their existence.) As t

o,
these g*(t) have an accunmulation point g** ¢ 0. I g** ¢ 0%, it is
the desired equilibrium. We must show g** ¢ 30.

In fact, assume ¢ ¢ 30, and let K be the set of all k such

that Qk = 0. Let € » 0 be such that, if Iq - ql < g,

for all i, all k ¢ kK, and j 4 k. (This can be done since all

.. > 0.
Pix )

By (15), and since r <€ 1, we have

X, X, .
(24) ik 2 "ij
9 qj

for all i, all j 4 K, kX € K.
Since (24) holds for all i, the equilibrium condition (20)
can hold only if (24) holds as an equation throughout. This will

mean X

Then, for x <« kx, j ¢ K,

k‘ |
NI
Py

.....
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and, by (11)

<
W, (Al-, t) 2

or A
Ul (A1+) + t e 1 <r

. _ -a 2

Ul (Al ) + t e "1

s0 that, since r < 1,
UI' (gl+) < r
vt o(ag-) 2

and this is a contradiction. Thus g cannot be g*(t) for any ¢t,

and therefore ¢ = g**. We conclude that g** ¢ Qo, and is the

desired equilibrium.

3. Examples

We consider here several examples. The first three consider

some "'reasonable” utility functions; the last shows that the con-

ditions of Theorems 2 and 3 cannot be further weakened.

(a) Logarithmic utility

Assume that each bettor has a utility function

Ui(x) = log (Ki + x)

where Ki is a parameter, representing perhaps player i's reserves.

In this case, the optimability conditions (10) - (11) take the

form
Pij = A if x.. >0
- b ij
K.qg, + x_,
1°7 1]
or, equivalently,
2.,
(25) X;5 = =<1l -k q. if positive
J Ay J
(26)
x,., =0 f < K,
i 1 p;] ﬂlqjxl

16




In the simplest case, when all xij > 0, this will give us

n
A, = X.,. = 1 - K.
i ij Ai i
j=1
and so
1
\p T AT . K, -
1 pi

Substituting in (25), this gives us

Xj3 = (A3 F Kb by - Ky
To look for the equilibrium, we have, from (20) - (21)
m
X.. = * C.
D *iz T 9
i=1
Thus
> I S
(A + Kby = a0 LKy =gt C
1 1
SO 2{
(27) e - 7 (Ai + hi)pij
bi C+Zt\i
i

S

But ¢ = LdAi, and we see that qj* is then simply a weighted
average, with weights A, + Ky, of the several subjective pro-

babilities Pis-

(b) Exponential utilities

Consider, next, the exponential utility functions

U, (x) = - %%

where @, is a parameter, measuring, in some sense, bettor i's

risk aversion. (Essentially, l/ai can be thought of as representing

the sum of money which i would be "hurt" by losing.)

17




In this case, the optimality conditions (10)-(11) take the

form @.x,
aipij exp - —lqj = )‘iqj if x.ij >0
which reduces to
D..
= - 17
(28) aixij qj (log a, log Ai) + g, log qj .

if this (right side) is positive, and xij = 0 otherwise
(i.e. xij = 0 if aipij < Riqj).
Assuming, again, that all xjj > 0, summation with respect

to j gives us

P,
1
aiAi = log a, = lrg ll. + Z q.; log =1
so that, substituting in (28),

X, D. D,
ik =a—1- log ik z q. log —1-*7-]# Ai

Ik i % 5 7 1;
For the equilibrium odds, we add with respect to i,

obtaining

or

The right side of this last expression is independent of

k, and so
D L > 2

“~ a, 9 Pig g 9y ~ o,

1 1 1 1

[}
=<

where y is independent of k. Then

E’i 109 pip = Y

* =

log

Ty Zri
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)
4

. or n 1

i r.,+...+r

. * = r,

X (29) 9 r l l P;p¥i i n

] i=1

) where r, = ;i , and T is constant. Thus in this case - is

2

!
proportional to a weighted geometric mean, with weights o, of

the probabilities Pip-

(c) Linear utilitv.

Yet another possibility is to equate utility with money.
This case was treated in detail by Gale and Eisenberg (19359)
and so we will merely refer the reader to that interesting

article.

(d) A counter-example.

Let us consider a two-horse, two-bettor situation. Bettor
\ 1 is certain horse 1 will win whereas bettor 2 feels the race is

up for grabs. They have equal capital. Thus

Pyp =1 Pjp =0
1 -1
Py = 32 P = 2
Y A = A = ]

. Bettor 1's utility function does not much matter - he will

bet all his money on horse 1. Bettor 2 has a utility function
: x if x < 2
2
v_o(x) =
2 3 3
5 x25 .
It is easily seen that, if 1, < % , then bettor 2 will choose
3q
, - 1 - 3q
21 T 2 Xgp = 1 - 1L
2
. . 1 .
whereas, if q,; > 7 then 2 will choose

BRI At S N




. F ]
21 T2 22 2
For g, = ¢q_ = 1 we would have 1 S x < 3 x =1 - x
1 2 2’ : 4 21 4’ 22 21°
Since X,, =1, X120 =0 whatever q is, we will then have
3q
1 . 1
* = — -
bl (q) 1 + 5 if 9, <3
3q 3q
2 1 P . 1
* = - — = e —
bl (q) 2 > > + 5 if ql > 3
5 R 7 _ 1
T PhMe) s 7 i g, =3
For an equilibrium, we must have bl*(q) = 2q1 (since
Cc = A, 4+ a, = 2). But, from the above, we see this holds only
if 9, = I. But this leads to the undesirable discontinuity on

the boundary of the simplex, and we must conclude that there is

no equilibrium for this situation.




APPENDIX

Concavity and Convexity

A function f from R™ to /MR is said to be concave if, for
every x,y ¢ R", and 0 < A < 1 \
(30) F(Ax + (l-r)y) 2 Xf(x) + (l-\)f(u). ‘

It is strictly concave if strict inequality holds in (30) whenever

x . yand 0 < X < 1. A function F is convex [strictly convex]

if -f is concave [strictly concave] .

A

A set s ¢ R™ is convex if, for any x,y ¢ § and 0 < A 1,
Ax + (1-dA)y € S.
Generally, if £ is a concave function, for any g, the set
Sq = {x | f(x) 2 q} .
is convex. In particular, the set of all x which maximize f£f(x)

is convex (though it may be empty).

If a function f is strictly concave, it need not have a

maximum. If there is a maximum, however, the maximizing point is
unique.
If £: R R is concave, it will be differentiable almost

everywhere in its domain. Even when not differentiable, however,

g £ has both right and left derivatives, £’ (x+) and f'(x-). The

E; derivative is monotone non-increasing, satisfying

3 31(a) £'(x+) € £'(x-)  for all x

3 31(b) EFt(x=) £ F'(y+) if y < x.

EZ If £ is strictly concave, its derivative is strictly monotone,
Eg satisfying 31(a) and satisfying 31(b) with strict inequality.

{
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- Upper Semi-Continuity

. Let X, Y be topological spaces. A set-valued mapping from
r{ X to v is a mapping ¢4 which assigns, to each x ¢ X, a subset

:; ¢(x) ¢ vy. It is a correspondence if ¢(x) = ﬂ for all x ¢ x.

The set-valued mapping ¢ is said to be upper semi-continuous
3 , . * * *

2 1f, whenever X X*, y_ € ¢(xn), and y,—Y then y* e ¢(x*).
%

- Theorem. Let f be a continuous real-valued function defined

] on the product space X x v. Define for x ¢ x,

;:: d(x) = {9 | f(x,y) = max f(x,t)}

- tey

if then ¢ is an upper semi-continuous set-valued mapping from x to Y.
]

. If v is compact and non-empty, then ¢ is also a correspondence.
Sf Kakutani's Fixed-Point Thecorem.

] Let ¥ be a simplex in 1Rn, and let ¢ be an upper semi-

.f continuous correspondence from X to x, such that, for all x, ¢(x)
A is compact and convex. Then there is some x* e X such that

X* € b(x*).

,E
L~ 1

®

°
55

L
- Ay -

° 1%

7

T, R R e e R e St U PO St S TN o e . D L R L
LS, R O R R R R LA NN N e e e N T e Lt e et TR AT TN NN T




BIBLIOGRAPIY

1. Eisenberg, E., and D. Gale. "Consensus of Individual
Probabilities: The Pari-Mutuel Approach’”. Annals. Math. Stat.
1959, 165-168.

2. Kakutani, S. "A Generalization of Brouwer's Fixed Point
Theorem’™., Duke Math, J. 1941, 457-458.

~

3. Rockafellar, R.T. Convex Analysis. Princeton University
Press, 1970.

*

e s V¥
e w0

Ii_w‘
I}

it
Vale a4




DISTRIBUTION LIST

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VIRGINI.. 22214

CHIEF OF NAVAL RESEARCH (2)
ARLINGTON, VA 22217

LIBRARY, Code 0142 (2)
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

RESEARCH ADMINISTRATION (1)
Code 012

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

PROFESSOR GUILLERMO OWEN (8)
Code 530n

DEPARTMENT OF MATHEMATICS
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

(2)

LI T S S -
e e N AT A At At o e
4“._\':1”_\ A._\ -':. )} A"} I\*‘M‘ﬂ‘




L~
P
C
P~
-
P.

-r—

p
t-- .-.
S
L’, .
b - .
r-
&
" P
A M
- ["A RO
“ N e m . . .- g o R - - —~ e o= . —
“! . et T L T T R el . ST R o . o . . .
AN RV B S R ISR S SIS SR S S S ST U W I S B S S I, A ataPalsaa e O e el




